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NOTATION

dC(w) Complex random amplitudes of response

dF(W) Complex random amplitudes of sea elevations

E(X) Expected values of X

g Acceleration due to gravity

H 1/3 Significant wave height

IH(w)l2 Frequency response amplitude operator

h(t) Response function in time

k Wave number

M(a,b,c) Kumnan's confluent hypergeometric function

MN  N th moment of the spectrum

P(X) Probability distribution of X (cumulative probability
function)

p(X) Probability density function of X

R Absolute maximum of response r(t)
max

r(t) Response

SB() Bretschneider spectral representation

SG() Polynomial spectral representation

S ( ) General Bretschneider spectral representation

S () Spectral density function of response
r

S(W) Spectral density function of ocean waves

T Characteristic wave period

T2  Zero-crossing wave period

t Time

v



W Wind speed

Space position

r Gamma functions

Yt Theoretical value of Rmax such that P(R > yt) = 0.01

-M Theoretical value of most probable Rmax

n Surface elevation of the sea

"max Local maximum of fl

0(W) Random phase angles

Spectral bandwidth

S2 Variance squared

WFrequency

W0 Frequency of dominant energy
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ABSTRACT

This paper presents a review of the present method
for predicting ship responses in a seaway. The applica-
bility of the existing wave spectral representations for
global ship response predictions are discussed, and
problems associated with the extreme response predictions
are illustrated. The study indicates that the errors
induced by the use of different spectral representations
are of the same order of magnitude as the errors gener-
ated from the other assumptions used in the prediction
scheme.

ADMINISTRATIVE INFORMATION

The study reported herein was conducted in 1974 under the General

Hydromechanics Research program of the Naval Sea Systems Command. Funding

was provided under Project R02301 and Work Unit 1552-101.

INTRODUCTION

The most direct approach for predicting the long-term seakeeping

properties of a ship is to examine the long-term history of the ship's

seakeeping behavior, for example twenty years, and to use statistical
1*,2

methods to predict the long-term future from this history. 1 Unfortu-

nately, this method cannot be used at the present time, since there are

no long-term Rhip-motion histories available which have sufficiently long-

term spans. However, suppose that there are ships for which every needed

detail of the seakeeping history is available; there are still problems in

applying this approach. The serious shortcoming of this direct approach

is that the ship designer does not know which, if any, of the available

seakeeping histories to use to improve a particular seakeeping property.

This paper presents an evaluation of the commonly used alternate

approaches for predicting the seakeeping properties of a ship. The'ap-

proach traditionally employed is an indirect one for it uses the statisti-

cal properties of the sea to predict the statistics of the response, rather

than the seakeeping history. In this method, the designer first predicts

the expected probability distribution of ocean waves which the ship will

encounter. Then calculated are the motions of the ship as a response to

*A complete listing of references is given on page 39.
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those expected waves. The seakeeping property of interest is assumed to be

a function of the ocean wave; this function, which can be determined by

experiments and theory, has to be known in order to use the indirect pre-

diction method. Determining this response function may not be easy, since

the function is dependent upon not only the geometry of the ship but also

the operating condition such as the speed of the ship. However, throughout

this paper, the discussion will be made assuming the response function is

known.

Our evaluation of the indirect method is broken into four parts. In

the Ship Response Analysis section, the ship response formulation is pre-

sented. The sea spectra obtained from weather ships are discussed in the

Spectral Representation section from the point of view of ship response.

Short-term predictions and simulations are discussed next. Finally dis-

cussed is the long-term prediction method. For more recent information on

ocean wave data, References 25 and 26 have been added to the reference

list at the end of the report. Overall, it is shown that, within the

present framework of long-term predictions, the use of a more sophisticated

spectral representation will not lead to an improvement of the long-term

response predictions but may lead to more confusion.

SHIP RESPONSE ANALYSIS

Considering the surface elevations of the sea n as a stationary normal
3 4,5random process, Cartwright and Longuet-Higgins and Longuet-Higgins were

able to express many useful statistical qualities of the sea in terms of

the amplitudes of its Fourier transforms. They represent the sea eleva-

tions n(t,x) at a given time t and location x by

n(t,x) f ei(wt-kx)d(w) (1)

where w - wave frequency

k - wave number

g - acceleration due to gravity



I
The function dC is a normally-distributed complex random variable with

zero mean, which is related to the spectral density S(w) of the sea; if E[X]

denotes the expected value of a random variable X, the relation between

d (w) and the spectral density is given by

E[d (W) d (w')] = S(w)dw; when w ='

and

= 0 ; when w # w'

Then d (w) denotes the complex conjugate of d (w), and dE(-w) = dE(w).

If X denotes a statistical property of the sea, it is a function of

the sea spectrum S(w) and properties of the specturm. For example, the

average zero-crossing wave period T2 is given by

fw 2S (w)dw

T = 27r (2)
2 0

f S (w)dw

and significant wave height H can be approximated by
1/3

[c~ 1/2

H = 4 S()d (3)1/3 [ ~~w

thO

Let MN denote the Nt h moment of the spectrum;

MN s ldw (4)
-00



and the spectral bandwidth parameter is given by

= -M4 ](5)

The probability density of the local maximum in the wave elevation p(la)

is then given by3

22

P (n ma ) = exp I_ __ m

Mo Oox-.jN J <
maxex(_max)+(§2w

max

where (x) exp y2 /2)dy (7)

Within linear theory the statistical properties of a ship's response

can also be expressed as functions of properties of the sea spectrum. A

given ship response r(t) can be expressed as a convolution of the sea

elevation with response function h(t), which relates the response r to the

wave elevation n. The ship response is then expressed as

00

r(t) = f e iwt d (w)

Since the sea was assumed to be a Gaussian random process with zero mean,

dr(w) is a normal complex random variable with zero mean:

4



E~dCw~d wl Sr (w)dw; w w'

0 ;W W'

and

dC(W) = dC(-w)

The ship response spectrum Sr (w) is given by Sr (w) = IH(w)I 2 S(w), where

JH(w)i 2 is the response amplitude operator.

Our expression for r(t) ts similar to the expression for the sea

elevation n(t). The role that d takes in the expression for r is equiva-

lent to the corresponding role that dE takes in the expression for n.

Consequently, the formulas--Equations (l)-(7)--for calculating statistical

properties of the sea can be applied to calculate the corresponding pro-

perties of the response with S(w) being replaced by Sr (w). It is these

formulas which constitute the fundamental expressions for long-term indirect

ship-motion prediction methods. In these methods, prediction of the dis-

tribution of a statistical property of the response is equivalent to pre-

diction of the corresponding distribution of the sea spectra.

SPECTRAL REPRESENTATIONS

Sea spectra have to be calculated from continuous measured data for

the sea elevations. The measurements required for these calculations are

generally not available. Weather ships and wave buoys have been the pri-

mary sources for continuous sea elevation measurements, but their output

of data is relatively small in comparison to the amount of data needed for

long-term predictions. Even if today all the ships at sea were equipped

to continuously measure the sea elevation, it would be some time before a

sufficient amount of data were recorded for long-term predictions.

Many ships at sea record the wind speed, wave heights, and wave

periods at six-hour intervals. It is generally believed that the distribu-

tion of these observed parameters can be used to predict the distribution

of the sea states. For example, it is known that for fully developed ocean

waves the spectrum is, ideally, a function of wind speed only.
6'7
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Bretschneider 8 concluded from measured data that wave spectra could be

represented in terms of wave height and wave period. Others9,10 have sought

more complex representations of wave spectra in terms of more parameters

than wind speed or the two parameters of Bretschneider.

Since the prediction of the spectral density of a ship response is

equivalent to the prediction of the sea distribution, the response of a

ship in a fully developed sea* is then, ideally, also a function of wind

speed only. The fully developed Pierson-Moskowitz (P-M)11 spectra could

then be used to evaluate the response of a ship to a fully developed sea.

If the distribution of the sea spectra is represented by the two-parameter

Bretschneider distributions, then this spectral family can be used to pre-

dict the response of a ship as suggested by Cummins.1 2 Other representa-

tions could also be used in the long-term indirect prediction method, if

they are truly good representations of the sea-spectra density

distributions.

Let us first consider the use of the P-M fully developed sea spectra

in the indirect method. Suppose it is assumed, as in the past, that if a

ship survives in a fully developed sea which is the result of a given wind

speed, it will survive in any state of sea with the same wind speed.

Because the sea is not always fully developed and because it is assumed

that the worst condition6 encountered are in a fully developed sea, the use

of the P-M spectra would result (by assumption only) in over design at

least from the probabilistic point of view. For instance, suppose one Is

interested in ship fatigue stresses that result from waves exceeding a

given wave height; the expected lifetime-encounters of a ship with waves

exceeding this wave height would be larger when predicted from the P-M

spectrum than if one used the expected value calculated from the distribu-

tion of the sea conditions. On the other hand, if the conditions in a

sea that is not fully developed are not subordinate to those in a fully

developed sea, the application of the P-M spectra would lead to a meaning-

less prediction.

I *A fully developed sea is defined as the limiting sea state under a
given wind speed. This limiting sea state is a function of only wind speed.

6
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Figure 1 shows a case in which the sea spectrum is not subordinated to

the P-M spectrum at both high and low frequency regions. In view of uncer-

tainty of the observed wind speed a more generous wind speed of 40 knots

was used for comparison. It is seen that for responses which are most sen-

sitive to the excitation force in these frequency regions the measured

responses will certainly exceed those calculated from the P-M spectrum.

Hence, in general, a one parameter fully develope,, sea spectrum will not

give good results.

30.0 I 1

MEASURED SPECTRUM

0- --- 0 P.M SPECTRUM OF 40 KNOTS WINO

OBSERVED WIND SPEED 35 KNOTS
20.0

10.0 IO.I

0 0.4 0.8 1.2 1.6 t0

Figure 1 - A Comparison of Measured and Pierson-Moskowitz Spectra

British weather ships 1 3 have been continuously measuring the wave

elevations at weather stations for the past twenty years. The wave eleva-

tions obtained by these weather ships are measured by Tuckermeters aboard

the ship, and the measurements are recorded on strip charts. Because of

the complications involved in obtaining the early charts for the purpose of

digitizing the data, and because of the costs that would be involved in

such a large project, few of these records have been analyzed for their

spectral content. The records have primarily been analyzed 1 3 to determine

7



I
significant wave heights, zero-crossing periods, maximum wave heights, and

bandwidth parameters as these parameters have been considered the most

significant ones for engineering applications.

With the increased demands for characteristics of sea spectra,

Moskowitz et al.14 used a correlation method to obtain the spectra from a

large set of ocean-wave measurements. Their work resulted in the publica-

tion of 461 sea spectra. The data from which these spectra were taken

covered the years 1955 through 1960. The measurements were made in the

North Atlantic Ocean at the weather stations I, J, A, and K by two weather

ships: WEATHER EXPLORER and WEATHER REPORTER. The strip recordings which

were analyzed were originally selected to facilitate a study of the develop-

ment of wind-generated seas.
15

Miles used the fast fourier transform (FFT) method to obtain sea
spectra from a second large set of weather ship wave elevation measurements.

His set contained 323 spectra computed from wave elevation measurements

between the years 1955 and 1967. The strip recordings were originally

selected so as to obtain a population with an equal number chosen over

the four seasons and over preselected ranges of wind speed. The measure-

ments were made at weather station I by the following three weather ships:

WEATHER EXPLORER, WEATHER REPORTER, and WEATHER ADVISOR.

Since Moskowitz et al. selected their spectra to study the development

of wind-generated seas, it is generally believed that the statistical

results from their set of spectra cannot be used to represent ocean waves
15in general. On the other hand, since Miles' spectra have a nearly equal

number of samples from the four seasons and wind speed ranges, some re-

searchers have assumed that they should be considered more representative

of the average sea spectra than the set published by Moskowitz et al.

There are differences between the spectra calculated by Miles and

those calculated by Moskowitz et al., when the same wave elevation measure-

ments were analyzed. They both analyzed the wave record of April 8, 1955.

The resulting spectra, shown in Figure 2, are in good agreement for w <

0.8, but fail to agree at higher frequencies. Moskowitz et al. calculated

8
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10 CALCULATED FROM
CORRELATION METHOD

CALCULATION FROM
CALCULATED FROM FFT "I

rE '

1.0

!- -

0.10 1o
0.1 0.2 0.4 06 1.0 2.0

Figure 2 - Comparison of Spectra Calculated from the Fast
Fourier Transform and the Correlation Methods

the significant wave height H113 to be 27.4 feet (8.3 m) and the average

zero-crossing wave period T2 to be 8.1 seconds; Miles calculated H1/3 and

T2 to be 28.4 feet (8.6 m) and 7.4 seconds, respectively. Although the

agreement for the significant wave heights is good, there is approximately

a 10-percent difference in the wave periods; hence, from a two-parameter

point of view, there is a significant disagreement between the Miles'

spectrum and the spectrum of Moskowitz et al. for the case of April 8, 1955.

.19_ __ _ _



The disagreement between the two spectra at the higher frequencies

w > 0.8 is important. Errors in the high frequency end of the sea spectra

result in errors not only in the high frequency response of the ship but

also in the distributions of the wave parameters and would definitely lead

to errors in the long-term prediction. The higher-order moments of the

spectra are very sensitive to the accuracy of the spectral densities at

the higher frequencies; hence, estimates of the statistical properties

which are dependent on the higher-order must be handled carefully when

there are erroes in the spectra at the higher frequencies. With the

differences between the Miles' spectrum and that of Moskowitz et al. for

w > 0.8, the higher-order predicted by these spectra should differ signifi-

cantly so that long-term predictions based on each two-parameter spectrum

of wave height and wave period would differ.

Consider for the moment the values of T2 and H113 calculated by Miles

from the wave elevation measurements for station I. Diagrams of H1/3 - T2

are plotted for the three ships WEATHER EXPLORER, WEATHER ADVISOR, and

WEATHER REPORTER in Figures 3a, 3b, and 3c, respectively. There is con-

siderable scatter in the data obtained by each ship. The mean period T2

seems to increase with increasing significant wave height with a slope ex-

ceeding 0.5 for the data from WEATHER ADVISOR, whereas, the slope is closer

to 0.25 tor the data from the other two ships. The mean period for the

data from WEATHER REPORTER are generally higher than that from WEATHER

EXPLORER. Thus, there is an apparent significant difference between the

H1/3 - T2 diagrams for the three ships.

The large circles in Figure 3 are the averaged H1/3 - T2 taken from

Moskowitz for given H 1/3 These points tend to give higher values of T2

than the averaged data from WEATHER EXPLORER but slightly lower values of

T2 than the median of the WEATHER REPORTER data or the WEATHER ADVISOR

data. The differences between the data from the three ships are of the

same order of magnitude as the differences between the Moskowitz et al.

average H1/3 - T2 and the Miles' average. (The differences between the

spectra for the case of April 8, 1955 has already been noted.) Thus, the

differences between the properties of the Miles' spectra and the

10
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Figure 3a - Data from WEATHER EXPLORER
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N!4 0 AVERAGED VALUES FROM
MOUKOWITZ et 0l.
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3 - - T(H) FOR P-M SPECTRUM

2 2
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H1/3 (ml H1/3 (t

Figure 3b - Data from WEATHER ADVISOR Figure 3c - Data from WEATHER REPORTER

Figure 3 - Variations of Wave Periods with Wave Heights
from Weather Ship Measurements
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corresponding properties of the Moskowitz et al. spectra may not be due

entirely to the differences in sample population. While both sets of raw

data were collected by the same agency in similar manners, seemingly minor

differences in the collection and analysis procedures can lead to signifi-

cant differences in statistics of the sea waves.

Hoffman1 6 made use of the Miles' sea spectra to evaluate the two-

parameter characterizations of wave families. The main spectral parameters

of the measured wave data were shown to vary substantially from those ex-

pressed by the idealized mathematical spectrum SB(w) of Bretschneider; i.e.,
2 2 -5 -4]

SB(w) = AH1/3 (Tw) exp[-B(T2W) ], where A and B are constant. The

peak distribution of the nondimensional spectra was shown to deviate sig-

nificantly from the basic two-parameter formulation. Location of spectral

peak as a function of the mean period TI, presented in Reference 16, is

included in the present paper as Figure 4. With regard to ship response,

T1 AVERAGE WAVE PERIOD versus mo

12 KEY:

- MEAN
- " - MEAN STANDARD DEVIATION

o r- MEAN STANDARD DEVIATION
1 ( )SAMPLE SIZE

> 8 -- " .43 .eo-,7 )

A (14)

4 6

4 BRETSCHNEIDER FORMULATION

2

I i I I I I I I
0.36 0.45 0.55 0.65 0.75 0.85 0.96 1.06 1.15 1.26

mo (MAXIMUM SPECTRAL ORDINATEI

Figure 4 - Location of Spectral Peak as a Function of

the Mean Period T1 (Reference 16)

12
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Hoffman1  investigated the limitation of the Bretschneider spectral family

as a spectral representation of the sea at station I. Hoffman concluded

that the effect of the specific choice of spectral shape on the response

prediction was dependent upon the size of a ship.

In view of the insufficiency of the Bretschneider spectral family for
16

evaluating ship responses, Hoffman recommended the use of statistically

derived families of spectra. He selected a group of 80 spectra from Miles

to represent the sea at station I. The long-term distributions of bending

moment calculated from the use of this new group of spectra were compared

with those predicted from the P-M spectrum and Bretschneider spectrum.

The calculation of S.S. WOLVERINE STATE shows that the probability dis-

tributions for stress levels less than 8 kpsi (55160 kPa) differ little

from those predicted from the new family of 80 spectra and the two-

parameter family. Above stress levels of 8 kpsi (55160 kPa), the proba-

bility densities calculated from different spectral families become very

different, as can be seen in Figure 5 taken from Reference 16.

Gospodnetic and Miles investigated the average shape of spectra at

station I by the use of a polynomial representation. They represent a

spectrum by

S(W) SG(w; T_l, H1 /3)

N N-L
=2
-H T (327r) N' AM(W) ( AM(T -T)1/3 -l - i. 1/3 -l

L=0 M-O

where N - the order of the polynomial

and T - the average wave height and wave period calculated from

the ocean wave spectra of Miles
1 5

AML(w) - the coefficients of the polynomial

13
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15

10 N

0-
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Figure 5 - Long-Term Prediction of Bending Moment Responses
(S.S. WOLVERINE STATE) as Obtained from Four Alternative

Spectral Sources (19.3 Foot Draft; 16 Knots)

(Reference 16)

Coefficients AML(w) were calculated for both a first and a second

order polynomial representation. Figures 6 and 7 show the comparison of

the measured spectra with the Bretschneider representation and with the

second-order polynomial representation, respectively. The polynomial repre-

sentation shows a good approximation to the measured average spectra; the

improvement over the Bretachneider spectral family can be seen. Figure 8

snows the corresponding AHL(w) coefficients.

With respect to the shape of average spectra, the use of a polynomial

representation is successful for station I data. However, in view of the

oscillations of the AML(w)'s with w (see Figure 8), the use of polynomial

14
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representations for global ship-response predictions may be limited. This

is because the detailed oscillations of the A M(W) functions are probably

local features which can vary from one place to another. To estimate the

AM(w)'s for a global scale requires a large number of measurements, which

are not available at the present time. Simple calculations show that ap-

proximations of the Am(w)'s by smooth curves, up to a 50-percent change

15
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H = CHARACTERISTIC WAVE HEIGHT (metres)
T = T(-1) = AVERAGE PERIOD (seconds) A H 6

T 10
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Figure 7 - Comparison of Quadratic Regression Spectrum and Averages

of Measured Spectra in Each Cell (Reference 17)

were found in the spectral values for frequencies away from the main peak

when wave height and wave period are significantly higher than their

averaged values.

The major difficulty in the use of the generalized Bretschneider spec-
tral family, S ;- exp[-B(T )-n], is that the

g g f a 11 3  2  2W) Sg( ) 2
= An22

measured spectra have significant energy away from the spectral peaks while
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the mathematical expression for the spectrum falls off rapidly as shown in

Figure 9 taken from Bretschneider.9 As this figure shows, the spectrum

above f/fs = 1.5 fits the general form of X = 9 and n = 4 while major

energy containing region fits Z = 8 and n = 9 better.

In view of this difficulty, Bretschneider18 suggested the use of a

series of general Bretschneider forms. A two-term series of this form is

given by:

2 T ,- e-nST() 1/3 T1 {cA 1 (Tw) exp[-B(T')

+ (I-0t)A 2 (T"w)-P exp[-B(T"w) m]

17
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Figure 9 - Several Wave Spectra for K = 0.354 (Reference 9)

where T', T", Z, p, m, and n are parameters which have to be determined

from observations. This two-term form has been applied to the ocean wave

spectrum of Miles1 5 with good results. Figures la, lOb, and lOc show

three examples. The solid curves are the measured spectra and the curves

with dots are calculated from the two-term series expressed above.

With regard to the long-term prediction, the above two-term series of

the generalized Bretschneider form does not have significant advantage over

the polynomial representation 1 7 or the statistical family of Hoffman16 at

the present time. This is because there is not sufficient information

available to accurately determine the global joint-probability distribution

of nine parameters; the information available now is limited to the joint

probabiltiy distribution of only wave heights and wave periods. This is

not enough information to construct the joint distribution of nine param-

eters as required for two-term series of the generalized Bretschneider

18
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family. However, because it only involves nine parameters, the determina-

tion of the joint distribution will require fewer measurement samples than

those required by the previously discussed polynomial and statistical

family spectral representations. The joint distribution could have an ad-

vantage because it requires fewer measurement samples.

SHORT-TERM PREDICTION AND SIMULATION

With a given spectral representation and its distribution, to predict

responses of a ship over her lifetime requires the knowledge of her response

statistics with respect to each sea spectrum. For linear phenomena, the

probability model of linear ship responses discussed in the Ship Response

Analysis section should theoretically enk&ble one to estimate all statis-

tical properties of the responses required for prediction, if the response

operators are known. Practically, the calculations can be very involved

when all of the sequential events are correlated. To simplify the calcu-

lations, short-term prediction techniques have been proposed which consider

the members of a sequence of responses to be independent. For example, the

magnitude of a response amplitude for the successive cycle is independent

of the magnitudes of the amplitudes of the present and the past cycles.

By definition, the probability density function for a positive local maxi-

mum p+ (rmax) is given by

P( ~ax =~max) =(+ 2- )P~mxP+ (TIma x ) 0 rmx rmx

J P(Tmax) dylmax

0

where Equation (6) has been applied.

The probability density function p(y) for the extreme y of N local

positive maximums is given by

p(y) - N [P+(Y) ( p+ W+xdx N-1]

when the local maximums are considered to be independent.

20



Discussions on the above distribution have been given by Ochi,
18 .19

who has used this distribution to determine design load criteria for the

bending moments on the MARINER hull. The mathematical criteria he used for

the design are that the probability that the extreme bending moment is

greater than the design value, is 0.01 when a ship is operating in the most
20

critical sea state. The confidence factor CT, used by Baitis et al. for

predicting the extreme accelerations, is equivalent to the most probable

value of y. They have concluded that the predictions on extreme waves are

more influential than the choices of the probability level for predicting

the acceleration.

Available measurements of the sea elevations and the motions of a ship

indicate that each of these random processes can be correlated for consecu-

tive events. Figure 11 was derived from full-scale trial data for USS

BOWEN to demonstrate the correlation between the roll amplitudes for two

consecutive cycles. The horizontal line shown in the figute is a
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theoretical expected roll amplitude for adjacent successive cycles when the

consecutive cycles are assumed to be statistically independent. The meas-

urements have a significant deviation from this theoretically predicted

line. The measurements indicate that when the response at present is

higher than its averaged value, the response during the next cycle will

more likely be higher than that predicted from the theoretical horizontal

line. The correlation between consecutive cycles is about 0.6 for the data

shown in Figure 11. Now, if one applies the joint Rayleigh distribution
22

to these measurements, the expected roll amplitudes A2 for the next cycle

will be a function of the amplitude A of the present cycle, given by
1

A22

-X A 2E[ Aexp r- (312) 42

2a (1- ) a

The variance squares are given by:

2 2 21 l+X2A 2
E[A2 ;A1] f 2a (1-X I2( 2)I

and

E[(A 2-E[A 2 ;A1]) 2;A 1] - E[A 2 ;A1 ] - ;AI]) 2  (9)

where A = successive events

- variance of A

- constant related to the correlation of A1 and A2
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r - gamma function

M - Kumman's confluent hypergeometric function

The curves for the expected value and the variance of A 2 are plotted as

dashed lines in Figure 11 with A = 0.6. These predictions show better

agreement with the measurements than the theoretical predictions which as-

sumed statistical independence.

The correlation function for the consecutive events of the response

varies from one type of response to another. In general, nonadjacent suc-

cessive cycles are weakly correlated, yet the correlation between the

cycles can persist for many cycles. Figure 12 shows the correlation func-

tion for roll measurements used to construct Figure 11. It is seen that

the correlation function oscillates between 0.2 and -0.2 even after five

cycles. To predict these weakly-correlated sequential events, one has to

formulate a conditional distribution. It can be very involved. In cases

where one is only interested in the very immediate future of the motions of

r I I I I I I i I I I I I I I i l ' I I
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Figure 12 - Correlation of Roll Amplitudes with Respect
to the Number of Cycle Lag
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a ship, such as for launching a missile, a different prediction model such

as an autoregression model could be more useful. The choice of parameters

for the autoregression model depends on the physics of the phenomena being

predicted. While techniques for predicting the immediate waves and roll
motions could be developed, a regression model cannot be used to predict

the long-range future with any degree of confidence.

For a nonlinear system, the response may no longer be a Gaussian

random process even if the sea elevation is Gaussian. In this case, the

formulation of an analytic distribution function for a given event will be

quite difficult, if at all possible, using present techniques. One, there-

fore, needs an alternative to the probability model of linear ship response.

One such hypothetical alternative is to simulate the sea and the ship

responses either experimentally in a wave tank or numerically on a com-

puter. In this approach, one generates a series of waves in a towing tank

and measures the response of the model to these waves, or one generates a

series of sea surfaces on the computer and through numerical techniques de-

termines the response of a theoretical ship. In either case one generates

a series of waves and determines a series of responses to these waves. If

enough trials are run, this series of responses contains all possible

events permitted by the response model under consideration. The probability

of occurrence of a certain event can then be computed from this series of

responses. In the following, the inherent deficiencies of this approach

will be discussed.

In order for the simulation to work, one must first have a good simu-

lation of the ocean surface. The sea elevation was expressed in Equation
ie(w)

(1) in terms of the random variable dE(w) = d(A(w)e ), where A is a

given function of w and e is the random phase angle, which is assumed to

have a uniform distribution. For any given sea spectrum S(w), the surface

elevation n(t,x) varies with the choice of 6(w). The responses correspond-

ing to each choice of 0 will differ from each other; however, the statis-

tics obtained from each choice should be approximately the same if the

process is simulated for a sufficiently long time.
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A discrete form of Equation (1) must be used in the digital computer

simulation approach. The following form is typical of the discrete forms

which have been used in place of Equation (1).

M

nd(t,x)= (2S(wi)Awi)1/2 cos (Wit-kix+6i) (10)
i=1

where n is the sea elevation obtained from the discretized spectrum. One

picks the number of intervals M into which the frequency range is divided

and the length of each interval Awi, so that the statistics of nd approxi-
mate the statistics of n. In regions where the slopes of the spectrum S(w)
are steep, the interval lengths Awi must be small; whereas, in regions of

gentle slope these lengths can be taken larger. One checks the choice by

computing the spectrum Sd(w) and comparing the resulting spectrum with S(w).

If agreement is not obtained, the intervals are refined, and Sd(w) is re-

computed; this process is repeated until agreement to within a given error

is obtained. These calculations are generally done on a digital computer.

Although their spectra might agree to within an extremely small toler-

ance, there are major differences between the statistics of nd and those

uf n. In the fir-t place, n d is a singular stochastic process; in other

words, nd is determined for all (t,x) once either the M phase angles a are

given or the values of n are given at M distinct points (tN,xN). Although

the function nd is a realization of n, for every choice of phase angle

(W), (W2 ) ..... , O(N), not every realization of n can be represented in

the form of Equation (10).

The extreme values of the function nd are limited by the choice of

- Mi (AWI)

i-l,..., H
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whereas the extreme values of n are dependent only on the physical param-

eters. Verification of the former statement follows from Equation (8):

M

Ind(tx)I I 7' (2S(wi)AWi)1 /2 cos [)it-kx+ (Wi)] I
i=l

M
< [(2S(wi)) ]1/2(Awi)1/2

i=l

Application of the well-known Cauchy inequality and the definition of H1/3

yields

Ind(t'x) l < ( H 1/ 3

where

AW = Min Ai

This inequality represents a limitation on max Ind(t,x)l; hence, the ex-

treme value of wave amplitude derived from the simulation is restricted to

one's choice of numerical bandwidth.

A further deficiency of Equation (10), as a simulation of the sea

elevation, is that it is single valued. The sea surface of a wave which

is in the process of breaking is multivalued. Hence, Equation (10) cannot

be used to study any response phenomena which are related to breaking

waves. Perhaps, one can use a Lagrangian model of the sea in simulating
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breaking waves. Pierson showed that such a model can be multivalued and

can account for breaking conditions. The validity of a Lagrangian simula-

tion model should be investigated further.

The waves generated in a wave tank may not follow the same dynamics

as the waves in the open sea; the dimensions of the tank, the characteris-

tics of the wave generators and other random environmental effects can all

influence the statistical behavior of the waves generated. The differences

in the statistics of waves measured in the open sea and of those simulated

will result in differences in statistics between responses measured in the

open sea and simulated. Since it is not possible to simulate every detail

of the statistics of the waves, a proper simulation conserves only the

major influential parameters of the waves. At the present time, the wave

spectra, the significant wave heights, and the wave periods have been con-

sidered as the most influential parameters for studying the response

transfer operators. To study the extreme responses from simulations for

long-term predictions, one has to include some other influential parameters

such as the maximum wave elevation. To conserve this parameter is not

easy, as has been discussed previously, and the extreme prediction based

on the simulations can be biased.

A comparison of extreme wave elevations measured2 1 in the open sea,

in a scakeeping basin, and simulated by a digital computer is presented

in Table 1 which gives the ratios of maximum wave elevations to

V2xvariance. Since the ratios are a monotonically increasing function of

the length of each record, comparisons can be made only for comparable

record lengths. Table 1A presents the ratios from records with approxi-

mately 100 wave cycles and Table lB is for 150 wave cycles. It seems that

the digital computer-simulated waves have a lower maxima in comparison

with the measured open sea waves while the maxima generated in the basin

are higher than in the open sea. The deviation between ratios calculated

for these three kinds of waves is not large. However, the differences can

be critical for long-term ship predictions which will be discussed in the

next section.

27
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TABLE 1 - COMPARISON OF EXTREME WAVE ELEVATIONS MEASURED
IN THE OPEN OCEAN, IN THE MODEL BASIN, AND SIMULATED

BY A DIGITAL COMPUTER

TABLE IA - RECORDS WITH APPROXIMATELY 100 WAVE CYCLES

Digital Measured Ocean Tank
Simulation Data Simulation

1.79 1.90 2.78

1.89 2.00

1.90 2.00

1.98 2.05

1.99 2.24

2.03 2.26

2.10 2.43

2.19 2.44

2.28 2.47

2.5' 2.78

TABLE lB - RECORDS WITH APPROXIMATELY 150 WAVE CYCLES

Digital Measured Ocean Tank
Simulation Data Simulation

1.89 2.11 2.08

2.00 2.13 2.17

2.12 2.17 2.38

2.14 2.20 2.38

2.26 2.20 2.40

2.28 2.23 2.51

2.44 2.25 2.56

- 2.32 2.79

- 2.33

- 2.39

- 2.48

2.65
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LONG-TERN PREDICTION

Theoretically, the probability model for long-term ship responses can

be obtained from the ship responses in the anticipated seas. First, one

predicts the distribution of sea conditions in which the ship will operate.

A short-term response model is formulated for each of the sea conditions;

the long-term ship response distribution is calculated using the predicted

sea conditions. Finally, the expected occurence of the various response

events are calculated; for instance, the probability P that a response R

will exceed a given level, for example a, is customarily given by

M

P(R>a) - P(R>a) p(sea = N) (11)

N=I

The procedures that are presently followed in carrying out these

calculations are not correct. In particular, the calculation of the long-

term ship response distribution from the distribution formulation, Equa-

tion (11), for predicted sea conditions is not correct. Also, the required

accuracy of P(R<a;N), the probability that the response is less than or

equal to a in the N th sea state, is higher than can be obtained from

either the existing data or the previously discussed simulations. These

two points will be considered in detail.

Let us consider a problem analogous to the problem of long-term ship

response. Consider a city which has five different timing ratios on its

traffic lights. Let the five ratios between the time the light is green

and the time it is red be: 3/2, 1/2, 1/3, 1/4, and 1/11. Suppose on a

given trip through the city a driver expects to pass through 20 different

traffic lights with 10 percent of the lights in the city being a 3/2 ratio,

20 percent a 1/2 ratio, 30 percent a 1/3 ratio, 35 percent a 1/4 ratio, and

5 percent a 1/11 ratio. What is the probability p that the driver will

pass through without having to stop for a light? The answer is straight

forward if the lights are statistically independent, i.e.,

[ 29
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p - (3/5)20 x 0 .l (1/3)2 0 X0 .2 (1/4)20 x 0.3 (1/5) 20x 0 .35 (1/12)20 x 0 . 05

= 1.15 x 10
- 1 2

However, if the customary procedure, Equation (11), for predicting the

long-term ship response were used, the answer would be

p = (3/5x0.1 + 1/3x0.2 + 1/4x0.3 + 1/5x0.35 + 1/12x0.05)
20

= 6.5 x 10
- 12

The answers differ by a factor of 5.7.

In this problem, the percentages of the traffic lights correspond to

the predicted probability distribution of the sea states. The timing

ratios correspond to the ratio of times when the response is significant

and when the response is negligible. From the example one sees how the

commonly used method for predicting long-term ship responses can over-

estimate. The correct formulation should be

M

P(R max<a) - 17 P(R<a; sea - N; response parameters)

N-1

and

dP(R <a)

max-p(R -a) - da
max d

Applying this formula to compute the probability that R < a, one has

P(R <a) "7 [1-exp(-a2/2a 2]MN  (12)

N

and
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p (Rma-a) = {M~ a- expQ -a ) [-exp() -a 2 N-

e a 2 M](13)

where the short-term uncorrelated Rayleigh distribution is applied for

demonstation purposes. As discussed previously, the assumption that events

are uncorrelated could introduce significant error.

For a typical long-term prediction, the order of M for low sea states
7 3

is greater than 10 . For high sea states, it is greater than 10 . The

probability distribution function for extremes, Equation (13), is then of

the form LT b N] with b <1, (- <1ad1

£ N

< 108. Since (0.999/0.999999)I 0 3 is equal to e - and (0.999/0.999999)10

is e- 9 995 a small error in the estimated probability Cn can result in a

large error in the probability for extremes. To evaluate p(R max=a) accu-

rately, it is required that the probability distribution for the response

at low sea state be accurate to 10 - 7 . This is much more accuracy than the

accuracy that can be obtained from the present techniques. To predict the

probability of the occurrence of larger responses is thus not practical

and the many methods for predicting the extreme value of ship response are

largely academic.

To avoid the difficulties of constructing the probabilities accurately

to 10- 7 at low sea states, Ochi19 considers only the extremes of a response

for the most severe sea conditions; the number of cycles M is on the order

of 104 for severe seas. The probability of R being greater than amax
given value a can be calculated from Equation (12). It is P(R max>a) f

1 - [P(R<a)]M with M 0(10 4). If one chooses a design value such that

P(R >a) =0.01, one has
max-
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P(R<a) (1-0.01)10 -4 = (0.99)1 0- = 1 - 1.005 x 10

or (14)

P(R>a) Z 10 - 6

where M = 104 has been applied in the above calculation.

It is seen from Equation (14) that the extreme design value a has a
-6probability level of 10 . Because of nonlinear effects and physical con-

straints, it is doubtful that the present response distribution function

can accurately estimate probability to this level. An error factor of two

or more can easily be obtained from the approximated distribution for R.

The pitch motions of USS BOWEN2 1 operating at a State 2 sea have been
used to study the distribution of extreme values. Table 2 presents the

ratios of positive maximum to '2xvariance for 16 different runs. The

ratios ym calculated from the measurements, are presented in column two.

The corresponding theoretical values yt of p(R max > t 0.01, calculated

from Equation (17) of Reference 19 are given in column four for comparison.

Also given in the table are the theoretically calculated most probable

values for R max . Since the number of observations is limited, to reject

or accept the theoretical distribution has to be studied from probability

theory. The measurements indicate that at twelve out of sixteen runs the

measured ratios are greater than their corresponding theoretically calcu-

lated most probable values. Theoretically, one would expect (l-e -1 ) x 16

runs, i.e., 11 runs. The comparison is good. However, if one compares

the measured ratios to those of low probability level, one has little con-

fidence of the theoretical distribution for R; the measured ratio for

run 12 is 3.15 which is about 3 percent larger than the theoretical value

Yt of 3.05. This sample is thus falling in the region of probability level

less than 0.01, theoretically. The probability that one out of sixteen

runs falls in the same probability level as run 12 is less than 7 percent.
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TABLE 2 - COMPARISON OF MEASURED EXTREME PITCH ANGLES AND
CORRESPONDING THEORETICAL ESTIMATIONS

Max. with
Theoretical Most ma.wt

Run Measured Max. Thoral Most 0.01
Positive/V0 probable Max./ level/ vo

m ( a, )

1 2.36 2.16 3.04

2 2.46 2.21 3.08

3 2.58 2.20 3.08

4 2.64 2.27 3.13

5 2.78 2.23 3.10

6 2.30 2.43 3.24

7 3 2.33 3.1'

8 2.46 2.19 3.07

9 2.30 2.34 3.18

10 2.08 2.25 3.10

11 2.36 2.38 3.20

12 2.17 3.05

13 2.82 2.40 3.22

14 2.26 2.15 3.03

15 2.34 2.15 3.04

16 2.86 2.32 3.16
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The measured ratio for run 7 is 3.04, which is less than the corresponding

Yr" Thus, this sample is outside of the probability level less than 0.01

region. However, it can be demonstrated from formulas19 that this sample

is in the region of probability level of 1/44. Hence, this set of samples,

results in 2 out of 16 samples falling in the probability level of 1/44.

The probability of more than 1 out of 16 samples falling in the 1/44 region

has been estimated to be less than 5 percent. If one takes a 95 percent

confidence interval to evaluate the theoretical distribution, the distribu-

tion is rejected. Since the theoretical distribution is rejected when one

considers a very small probability level, one will have little confidence

in design criteria based on theoretical consideration of that probability

level.

Now if one returns to Figure 8, it is seen that the stress predicted by

the use of different spectral families is within a factor of two. Thus,

from the long-term extreme value prediction point of view, the errors

caused by the insufficiency of the spectral representation are not greater

than the errors introduced by other approximations in present prediction

schemes.

CONCLUDING REMARKS

Since the work of St. Denis and Pierson 24 and of Cartwright and

Longuet-Higgins, 3 one has been able to relate the general statistical

features of the response of a ship to the sea spectrum. Comparison of the

statistics of the measured response with those calculated from theoretical

formulas has indicated that the theoretical calculations are quite good

from an engineering point of view; e.g., the ratio of significant response

to the variance of the response is close to the theoretical predicted

value of four. As a result, the use of theoretical formulations has been

a common practice.

In modern ship design, rough estimates of the ship response may not

always be adequate; for example, differences of 10 percent in predicted

stress levels could represent substantial increases in hull structure

costs, and a 10 percent increase of roll angle could classify a design as

34
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acceptable or unacceptable. Thus, in some cases, the probability distribu-

tion for the ship response has to be formulated in order to optimize the

design. To obtain a higher accuracy for the prediction, one needs an accu-

rate representation of the sea, an accurate distribution function for the

sea, and an accurate transfer function between the sea and the responses.

The present spectral representations are not adequate for optimal

design. In general, the P-M fully developed sea spectra should only be

used for fully developed seas. There are cases in which the energy of sea

spectra in a nonfully developed sea are not subordinate to the P-H spectra;

at other times the P-H spectra results in overdesign. There are signifi-

cant differences at the higher frequencies between spectra calculated by

FFT and those calculated by the correlation method. Errors at the higher

frequency end of the sea spectra result in errors in the high frequency

response of the ship, in the long-term response predictions, and in the

statistical properties dependent on the higher order moments of the sea

spectra. Hoffman1 6 has already pointed out the shortcomings of the

Bretschneider spectral family. However, Hoffman's proposed statistical

families of spectra are only for station I. Spectra for other areas of the

ocean still remain to be determined.

Because cf the persistent wave energy at high frequencies, the power

law of thc gcneral Bretschneider form is unable to fit the measured spectra

for both the energy contain region and the high frequency region. Separate

treatments for these regions are necessary if one is interested in a mathe-

matical representation. The use of two-term series of the general

Bretschneider form gives good results, but involves nine parameters which

have to be determined from measurements. The determination of these nine

parameters for the purpose of global ship response predictions is not

economical. The Gospodnetic 1 7 and other polynomial representations, which

reduce the dependence of spectral density at one frequency on that of the

other frequencies, show improvement over the Bretschneider spectral family,

yet they too cannot be applied globally because of the oscillations in the

series coefficients.
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To correct the high frequency region, one may also represent the

spectrum by S(w) = SB(W) + f(W,H1 /3 ,T) where f is an unknown function of

wind speed W and wave height H1/3' SB(w) is the general Bretschneider

spectrum, and T is the characteristic wave period. This representation

could reduce the unknown parameters, which are nine for two-term series of

Bretschneider forms, to a smaller number. However, the applicability of

this form to the measured spectrum needs to be studied.

The present short-term prediction scheme considers each cycle of

response to be independent of the past cycles. However, there are responses

which have considerable correlation between successive cycles. A knowledge

of these correlations can improve response predictions especially for pre-

dicting the occurrence of severe responses which are, in general, the

result of several successive critical waves.

The lifetime of a ship is generally considered to be twenty years.

The period of one cycle of a ship response is on the order of 10 seconds.

Thus, over the lifetime of a ship, she undergoes 108 response cycles. To

estimate the probability distribution of extreme values of response with

such a large population requires a very accurate distribution function for

each cycle of the response. For example, the expected extreme value of

108 samples drawn from a Gaussian distribution can be much higher than from

the physical distribution which is a truncated Gaussian distribution. The

present knowledge of sea spectra, the distributions of sea states, the

transfer functions between the sea and ship response, and the short-term

distribution of the response are not accurate enough to allow one to pre-

dict the extreme behavior of a ship within a useful confidence level.

Knowing the transfer operator and the ocean wave spectral distribution

is not sufficient for predicting the extreme behavior of a ship over her

lifetime. A knowledge of the physical constraints on the extreme of a

response, and a better understanding of the response distribution at its

extreme end are necessary for better predictions. Since, by definition,

the occurrence of extreme values is rare, much data are required to empha-

size the extreme end of the response distribution. To collect data
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economically, one needs to have a prior knowledge of when the extreme valueis most likely to occur. This will require a better physical understandingof the phenomena, as well as engineer's intuition and experience. Mathe-matics cannot be used to solve the extreme value problem without the aid
of physics.
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